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Abstract	 	 Seasonal	 probability	 forecasts	 produced	 with	 numerical	 dynamics	 on	
supercomputers	 offer	 great	 potential	 value	 in	 managing	 risk	 and	 opportunity	
created	 by	 seasonal	 variability.	 	 The	 skill	 and	 reliability	 of	 contemporary	 forecast	
systems	 can	 be	 increased	 by	 calibration	 methods	 that	 use	 the	 historical	
performance	 of	 the	 forecast	 system	 to	 improve	 the	 ongoing	 real‐time	 forecasts.		
Two	calibration	methods	are	applied	 to	 seasonal	 surface	 temperature	 forecasts	of	
the	U.	S.	National	Weather	Service,	the	European	Centre	for	Medium	Range	Weather	
Forecasts,	 and	 to	 a	 World	 Climate	 Service	 multi‐model	 ensemble	 created	 by	
combining	 those	 two	 forecasts	 with	 Bayesian	 methods.	 	 As	 expected,	 the	 multi‐
model	 is	somewhat	more	skillful	and	more	reliable	than	the	original	models	taken	
alone.		The	potential	value	of	the	multimodel	in	decision	making	is	illustrated	with	
the	 profits	 achieved	 in	 simulated	 trading	 of	 a	 weather	 derivative.	 	 In	 addition	 to	
examining	the	seasonal	models,	the	article	demonstrates	that	calibrated	probability	
forecasts	 of	weekly	 average	 temperatures	 for	 leads	 of	 two	 to	 four	weeks	 are	 also	
skillful	 and	 reliable.	 	 The	 conversion	 of	 ensemble	 forecasts	 into	 probability	
distributions	 of	 impact	 variables	 is	 illustrated	with	 degree	 days	 derived	 from	 the	
temperature	 forecasts.	 	 Some	 issues	 related	 to	 loss	 of	 stationarity	 owing	 to	 long‐
term	warming	 are	 considered.	 The	main	 conclusion	 of	 the	 article	 is	 that	 properly	
calibrated	probabilistic	forecasts	possess	sufficient	skill	and	reliability	to	contribute	
to	 effective	 decisions	 in	 government	 and	 business	 activities	 that	 are	 sensitive	 to	
intraseasonal	and	seasonal	climate	variability.			
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This	 article	 is	 a	 contribution	 to	 the	 Climate	Dynamics	 Topical	 Collection	 on	 the	
Climate	Forecast	System	Version	2	(CFSv2),	which	is	a	coupled	global	climate	model	
that	was	implemented	by	National	Centers	for	Environmental	Prediction	(NCEP)	in	
seasonal	 forecasting	 operations	 in	 March	 2011.	 This	 Topical	 Collection	 is	
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1. Introduction	

Regional	climate	variability	on	 temporal	scales	of	weeks,	months,	and	seasons	has	
significant	impacts	on	a	wide	variety	of	public	and	private	activities.		Climate	related	
risk	and	opportunity	shape	commercial	and	government	planning	and	activity	and	
may	have	profound	and	diverse	effects	on	business	revenues	and	costs.			

Users	 of	monthly	 or	 seasonal	 forecast	 services	 seek	 information	 that	will	 help	
them	anticipate	the	most	likely	climate	variations,	mitigate	potential	adverse	effects,	
and	take	advantage	of	seasonal	opportunity.		The	most	effective	weekly	to	seasonal	
forecasts	 are	 expressed	 in	 terms	 of	 probabilities,	 in	 part	 because	 that	 quantifies	
uncertainty	 and	 in	 part	 because	 probabilistic	 forecasts	 can	 be	 combined	 with	
business‐specific	 financial	 metrics	 to	 optimize	 decisions	 and	 actions.	 	 Successful	
probability	forecasts	allow	decision	makers	to	estimate	accurately	the	probability	of	
success	of	their	available	options.			

Recognizing	 the	 potential	 value	 of	 weather	 and	 climate	 forecasts,	 the	 United	
States	and	other	nations	make	considerable	investments	in	atmospheric	and	oceanic	
observations,	in	analyzing	the	data,	and	in	attempting	to	predict	future	atmospheric	
events	 or	 statistics	 with	 numerical	 forecast	 systems.	 	 This	 process	 is	 remarkably	
successful	in	predicting	the	weather	over	the	range	of	a	few	days,	but	progress	has	
been	less	notable	with	numerical	forecasts	for	a	season	or	two	ahead.		The	forecast	
range	of	a	few	weeks—between	the	initial	value	problem	of	weather	prediction	and	
the	boundary	value	problem	of	 seasonal	prediction—has	seemed	to	be	even	more	
challenging.	

Here	we	consider	three	numerical	surface	temperature	(t2m)	ensemble	forecast	
products:	

 The	 second	 version	 of	 the	 Climate	 Forecast	 System	 (CFSv2)	 of	 the	 U.S.	
National	Weather	Service	(NWS)	(Saha	et	al.	2013),		

 The	fourth	version	of	the	Seasonal	Forecast	System	(SFSv4)	of	the	European	
Centre	for	Medium‐Range	Weather	Forecasts	(ECMWF)	(Molteni	et	al.	2011),	
and		

 A	World	Climate	Service	(WCS)1	multi‐model	forecast	created	by	a	Bayesian	
combination	of	the	CFSv2	and	the	ECMWFv4	forecasts.			

For	clarity,	we	will	refer	to	these	forecasts	as	CFSv2,	ECMWFv4,	and	WCS	MME,	
despite	the	evidently	inconsistent	naming	convention.	

The	aim	here	is	to	demonstrate	that	the	probabilistic	versions	of	these	forecasts	
have	sufficient	skill	to	be	useful	in	planning	and	making	decisions	in	both	business	
and	public	activities.		Thus	we	focus	on	measures	of	forecast	quality	that	emphasize	
their	 utility	 in	 decision‐making	 rather	 than	 some	 measures	 often	 used	 by	 other	

																																																								
1	The	 World	 Climate	 Service	 is	 a	 commercial	 seasonal	 forecast	 service	 that	 provides	 a	 variety	 of	
climate	 information,	 analog	 construction	 tools,	 a	 monthly	 forecast	 and	 diagnostic	 document,	 and	
calibrated	 monthly	 forecasts	 of	 the	 NWS	 CFSv2,	 the	 ECMWF	 SFSv4,	 and	 the	 WCS	 multimodel	
ensemble	 at	 http://www.worldclimateservice.com.	 	 The	 WCS	 is	 a	 joint	 enterprise	 of	 Prescient	
Weather	 Ltd	 and	 MeteoGroup,	 an	 international	 independent	 weather	 and	 climate	 information	
provider	in	Europe,	the	U.S.,	and	Asia.		
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authors.	 	We	 also	 demonstrate	 that	 the	WCS	multi‐model	 is	 generally	 superior	 to	
either	of	the	two	original	models	taken	alone,	as	is	anticipated	by	the	present	efforts	
in	the	U.S.	and	in	Europe	to	create	seasonal	forecasts	from	independent	prediction	
systems:	 The	 National	 Multi	 Model	 Ensemble	 (NMME)	 in	 the	 U.S.	 (Climate	
Prediction	Center	2011a)	and	the	Euro	Seasonal‐Interannual	Prediction	(EUROSIP)	
in	Europe	and	the	U.S.	(ECMWF	2012),	both	motivated	in	part	by	the	success	of	the	
DEMETER	project	(Palmer	et	al.,	2004).	

To	date,	analog	and	statistical	approaches	to	seasonal	prediction	as	discussed	by	
van	den	Dool	(2007)	have	proved	generally	superior	to	dynamical	forecast	methods;	
Livezey	and	Timofeyeva	(2008)	reached	the	same	conclusion	in	a	review	of	progress	
in	U.S.	seasonal	 forecasts.	 	But	the	results	here	show	that	the	probability	 forecasts	
constructed	from	the	new	versions	of	the	computer	models	of	weekly,	monthly,	and	
seasonal	 climate	 variations	 now	have	 sufficient	 skill	 and	 reliability	 to	 be	 relevant	
and	 meaningful	 to	 climate‐sensitive	 enterprises,	 either	 directly	 or	 as	 guidance	
considered	in	objective	or	subjective	forecast	methods.			

2. Creating	and	Calibrating	Probabilistic	Seasonal	Forecasts	

Contemporary	 supercomputers	 can	 calculate	 tens	 of	 global	 seasonal	 forecasts	
simultaneously	 and	 thus	 initial	 conditions	 and	model	physics	 can	be	perturbed	 to	
generate	an	ensemble	of	forecasts	whose	evolving	spread	is	expected	to	indicate	the	
uncertainty	of	 the	 forecast.	 	Moreover,	 the	ensemble	members	can	be	arranged	 to	
produce	 a	 probability	 distribution	 of	 predicted	 values	 of	 the	 variables	 at	 specific	
locations	and	times.		

Forecast	error	generally	increases	as	lead	time	increases	from	days	to	a	season	
or	 two.	 	Thus	climate	variability	 forecasts	are	assessed	and	 improved	by	applying	
the	forecast	system	to	several	decades	of	historical	cases	and	comparing	the	results	
with	 the	 corresponding	 observations.	 	 The	 observed	 errors	 are	 summarized	
statistically	to	serve	as	corrections	for	future	forecasts,	with	the	local	errors	in	mean	
values	and	various	measures	of	spread	being	the	focus	of	the	calibration	process.			

The	 core	 of	 a	 seasonal	 probability	 forecast	 system	 is	 a	 dynamical	 Numerical	
Prediction	 System	 (NPS)	 that	 accepts	 initial	 and	 boundary	 conditions	 for	 the	
atmosphere	and	ocean	and	produces	an	ensemble	of	forecasts	or	analyses.		The	NPS	
is	used	as	the	engine	to	convert	historical	remote	and	in‐situ	observations	about	the	
atmosphere,	 ocean,	 and	 land	 and	 ice	 surfaces	 into	 a	 reanalysis	 dataset	 that	
represents	 a	 comprehensive	 climatology	 with	 atmospheric	 and	 ocean	 fields	
produced	by	the	NPS	from	the	observations.		This	reanalysis	can	then	be	used	as	the	
initial	 and	 boundary	 conditions	 for	 a	 large	 set	 of	 retrospective	 seasonal	 forecasts	
computed	for,	say,	every	month	from	1980	to	the	present	for	leads	of,	say,	one	to	six	
months.		The	reanalysis	can	serve	as	the	verification	observations	for	assessing	the	
skill	 of	 the	 forecasts	 and	 developing	 calibration	 statistics.	 	 Of	 course,	 any	
comprehensive	 set	 of	 atmospheric	 and	 oceanic	 observations	 or	 independent	
reanalyses	 could	 be	 used	 as	 well	 for	 this	 purpose.	 	 Finally,	 the	 NPS	 is	 used	 to	
compute	 the	 actual	 seasonal	 forecasts	 from	 some	 time	 forward	 and	 a	 calibration	
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process	can	be	applied	by	the	agency	computing	the	forecast	or	by	others,	such	as	
the	WCS,	that	are	creating	value‐added	products	from	the	numerical	forecasts.	

It	 is	 clear	 that	 the	 reanalysis,	 the	 retrospective	 forecasts,	 and	 the	 operational	
forecasts	 are	 equally	 important	 components	 of	 any	 process	 to	 produce	 calibrated	
seasonal	forecasts.		The	critical	assumption	is	that:		

Past	errors	are	a	prolog	to	future	errors	and		
can	be	used	to	improve	future	forecasts.	

There	is	an	evident	assumption	here	that	the	evolving	climate,	the	observations,	
and	 the	 NPS	 are	 all	 statistically	 stationary.	 	 Evidence	 of	 non‐stationarity	 merits	
careful	 consideration	 of	 how	 it	might	 be	managed	 in	 the	 calibration	 process.	 	We	
will	encounter	non‐stationary	conditions	at	various	points	in	this	article.	

We	use	calibration	schemes	that	simulate	the	actual	operational	forecast	process	
for	 all	 the	 seasonal	 and	 intraseasonal	 forecasts	 discussed	 here.	 	 For	 the	 seasonal	
forecast,	the	historical	period	is	1982‐1999	and	forecasts	are	made	for	the	ten	years	
2000	to	20092	with	the	calibration	computed	over	an	18‐year	period	prior	to	each	
forecast	 (Fig.1).	 	 The	 verification	 data	 for	 all	 three	 forecasts	 is	 obtained	 from	 the	
NCEP‐DOE	Reanalysis	2	(Climate	Prediction	Center,	2011b)	and	all	model	forecasts	
were	interpolated	to	the	1.875	degree	Gaussian	grid	of	this	reanalysis.		

2.1	A	variance	adjustment	calibration	scheme	

A	 first	 calibration	 scheme	 that	provides	 a	direct	 adjustment	of	bias	 and	ensemble	
spread	was	based	on	ideas	reported	by	Doblas‐Reyes	et	al.	(2005)	and	Johnson	and	
Bowler	(2009).	

We	 denote	 a	 member	 of	 the	 forecast	 ensemble	 at	 some	 point	 on	 the	 spatial	
domain	as	

	 fi (t)  F(t) fi '(t) i  1,2,, N 	 	(1)	

in	 which	 is	 the	 ensemble	 average	 and	 is	 a	 deviation	 from	 that	 average.		
The	time	variable	will	normally	be	discrete—a	sequence	of	 the	same	months	for	a	
number	of	years,	for	example.		The	verification	data	at	the	same	spatial	point	for	the	
same	 time	 period	 will	 be	 .	 	 We	 denote	 ensemble	 averages	 with	 	and	

temporal	averages	in	the	domain	T0  t  T with	an	overbar	 ( ) .				

Let	the	calibrated	forecast	be	

	 f̂i (t) F(t)  fi '(t) F0, T0  t  T , i 1,2,, N 	 	(2)	

with	spatially‐dependent	constants	,  ,	and	F0 .		In	this	formulation,	the	constant		
scales	 the	 departure	 of	 the	 ensemble	members	 from	 the	 ensemble	mean,	 and	 the	
constant		adjusts	the	ensemble	mean.		If	 1,	the	constant	F0 	simply	represents	a	
bias	adjustment	that	ensures	that	the	temporal	averages	of	the	ensemble	mean	and	

																																																								
2		 	The	CFSv2	became	operational	 in	March	2011.	 	Historical	 forecasts	 for	2010	were	not	available	
when	these	computations	were	initiated.	

F(t) fi '(t)

v(t)  ( ) 
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verification	 are	 identical	 at	 each	 spatial	 point	 over	 the	 verification	 set.	 	 The	
calibrated	ensemble	mean	is	then	a	bias‐adjusted	ensemble	mean.	

One	 method	 of	 determining	 an	 optimal	 value	 for		 is	 to	 minimize	 the	 mean‐
square	error	of	the	ensemble	mean	with	respect	to	the	verification.		However,	when	
this	 approach	 was	 applied	 to	 forecasts	 for	 2000‐2009	 it	 was	 found	 that	 the	
calibrated	ensemble	mean	showed	degraded	performance	(larger	mean	error)	than	
the	bias‐adjusted	ensemble	mean	( 1).		It	appears	that	the	poorer	performance	is	
a	 result	 of	 evolving	 quasi‐decadal	 trends	 in	 the	 forecast	 and	 verification	datasets;	
consequently,	 optimizing	 	 within	 the	 calibration	 history	 amounts	 to	 statistical	
overfitting,	 and	 the	 forecasts	 for	 subsequent	 years	 are	 less	 skillful	 than	 if	 no	
adjustment	 had	 been	 performed.	 	 Therefore	 the	 variance	 adjustment	 calibration	
proceeds	here	with	 1.	

The	appropriate	 scaling	of	 the	ensemble	spread	 is	determined	by	equating	 the	
ensemble	 variance	 with	 the	 variance	 of	 the	 observations	 within	 the	 calibration	
history		

	  ( f̂i  F̂)2    ( fi )
2    2 2

f  2
v 	 (3)	

which	leads	to	

	  2  2
v / 2

f 	 (4)	

Once	 the	 calibrated	ensemble	members	have	been	obtained,	 the	probability	of	
the	predictand	falling	within	any	range	may	be	estimated	as	the	ratio	of	the	number	
of	ensemble	members	within	the	range	to	the	total	number	of	ensemble	members.		
For	example,	 the	 fraction	of	ensemble	members	 for	which	the	predictand	is	above	
the	 climatological	 normal	 provides	 a	 forecast	 of	 the	 probability	 of	 above‐normal	
conditions.	

More	 generally,	 we	 can	 produce	 a	 probability	 distribution	 for	 a	 predicted	
variable	 from	the	ensemble	members	at	a	point	and	a	time.	 	Let	 f̂n, n 1, 2,..., N 	be	
the	ensemble	members	sorted	in	increasing	order.		Then	we	can	define	the	discrete	
probability	distribution	function	

	
Prob X  f̂n

   PX ( f̂n )  n/ (N 1)
		 (5)	

2.2		The	Gaussian	Comb	

A	novel	 approach	 to	 ensemble	 forecast	 calibration	was	proposed	by	Raftery	 et	 al.	
(2005)	 in	which	 the	uncertainty	surrounding	each	ensemble	member	 is	described	
by	 a	probability	density	 function	 centered	on	 the	predicted	 value.	 	 The	 individual	
density	 functions	 are	 then	 summed,	 with	 weights	 determined	 by	 a	 maximum	
likelihood	 algorithm	 that	 iterates	 on	 the	 forecast	 history,	 to	 obtain	 the	 overall	
predicted	 density.	 	 For	 temperature	 forecasts	 it	 is	 appropriate	 to	 use	 Gaussian	
density	functions	for	the	individual	densities;	the	collection	of	densities	then	forms	a	
set	of	“teeth”	in	what	is	known	as	a	Gaussian	comb.		
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The	weights	that	are	assigned	to	the	individual	member	densities	represent,	in	a	
Bayesian	framework,	the	likelihood	that	each	member	is	the	best	ensemble	member.		
In	the	general	case,	the	weights	differ	according	to	the	skill	of	each	member	in	the	
forecast	history.		However,	if	the	ensemble	members	are	known	to	be	equivalent	in	
terms	of	performance,	the	weights	may	be	constrained	to	be	equal.	

A	single	parameter		describes	the	variance	of	the	individual	member	Gaussian	
density	 functions,	 and	both	 the	weights	 and		 are	 determined	 by	 the	 expectation	
maximization	(EM)	algorithm	described	below.		After	the	iteration	converges,		can	
be	 further	refined	 to	ensure	 that	 the	verifications	 fall	within	a	 specific	probability	
range	in	the	predicted	historical	ensemble,	also	described	further	below.	

In	 applying	 the	 scheme	 to	 global	 seasonal	 forecasts,	 we	 allow	 the	 calibration	
parameters	 to	 vary	 in	 space	 because	 the	 computer	 models	 may	 have	 different	
performance	 characteristics	 in	 different	 parts	 of	 the	 world.	 	 Therefore	 we	 have	
computed	 the	 calibration	 parameters	 at	 each	 model	 grid	 point	 separately.	 	 This	
choice	dictates	that	the	ensemble	member	weights	are	constrained	to	be	equal	 for	
all	 members	 of	 the	 same	 model,	 because	 the	 18‐year	 forecast	 history	 is	 not	
sufficiently	 long	 to	 compute	 different	 weights	 for	 each	 ensemble	 member.	 	 An	
alternative	 method	 would	 be	 to	 compute	 the	 parameters	 using	 all	 forecasts	 and	
observations	 within	 a	 certain	 radius	 of	 influence;	 this	 approach	 would	 avoid	
overfitting	the	weights,	but	would	greatly	increase	the	computational	requirements.	

The	Gaussian	comb	was	also	applied	 to	 the	WCS	super‐ensemble	of	CFSv2	and	
ECMWFv4	 forecasts.	 	 The	 member	 weights	 were	 constrained	 to	 be	 equal	 within	
each	model's	 ensemble,	 but	 different	weights	were	permitted	 for	 the	 two	models,	
thereby	 allowing	 the	 locally	 superior	 model	 to	 attain	 greater	 influence	 in	 the	
calibrated	forecasts.		Thus	the	method	determines	the	standard	deviation	 	and	the	
weights	 	and	1 	for	 the	 two	 models.	 	 We	 will	 refer	 to	 this	 as	 the	 Bayesian	
calibration	of	the	WCS	multi‐model	and	note	that	the	variance	adjustment	algorithm	
is	not	used	in	this	process.		

The	combined	probability	functions	describing	the	Gaussian	comb	forecast	for	a	
predictand	y	are	

	

p(y)  wn

1

2 n1

N

 exp[
1

2
(
y  zn


)2 ], wn 1

n1

N



P(y)  p()d  wn
n1

N

 1

2

y

 erfc[-
y  zn

2 
]

	 (6)	 	

in	which	the	zn	are	the	bias‐adjusted	forecasts	from	the	N‐member	ensemble,	the	wn	
are	 the	weights	of	 the	 ensemble	members,	 and		 is	 the	variance	of	 the	 individual	
density	functions	in	the	Gaussian	comb.	

The	 expectation	 maximization	 algorithm	 (Dempster	 et	 al.	 1977)	 proceeds	 by	
iterating	 over	 the	 available	 history	 according	 to	 the	 following	 scheme	 until	 a	
satisfactory	degree	of	convergence	is	achieved:	
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n,t  wn

1

2
e


1

2
(
ytzn ,t


)2

n,t n,t /  j ,t
j1

N


	 (7)	

for	n 1, 2,..., N 	and	then	

	
wn 

1

T
n,t

t1

T



 2 
1

T
n,t

t1

T

 (yt  zn,t )
2

n1

N


	 (8)	

The	 probability	 functions	 in	 (6)	 provide	 numerical	 values	 once	 (8)	 converges	 to	
values	for	the	weights	and	the	standard	deviation.	

2.3	Three	Measures	of	Forecast	Quality	

In	this	section,	we	apply	three	measures	of	the	quality	of	 the	seasonal	 forecasts	to	
evaluate	and	compare	several	sets	of	calibrated	seasonal	forecasts3.		

2.3.1		Mean	Absolute	Errors	

The	 first	 is	 the	 mean	 absolute	 error	 (MAE)	 between	 the	 forecasts	 and	 the	
verification	data	averaged	over	the	forecast	domain	and	over	some	set	of	forecasts.		
Throughout	this	article,	we	consider	the	October	forecasts	for	the	season	December,	
January,	 and	 February	 (DJF)	 and	 the	 April	 forecast	 for	 the	 season	 June,	 July,	 and	
August	 (JJA)—a	 two‐month	 lead	 forecast	 for	 winter	 and	 summer	 in	 both	
hemispheres.	 	The	MAE	errors	are	computed	with	the	ensemble	means	and	do	not	
take	advantage	of	the	probabilistic	information	in	the	forecast	ensemble.	

The	MAE	statistics	of	the	ensemble	mean	forecasts	in	Table	1	illustrate	the	very	
marginal	skill	of	ensemble‐mean	seasonal	climate	forecasts.		On	a	global	basis	both	
the	 CFSv2	 and	 ECMWFv4	 models	 show	 a	 marginal	 degree	 of	 skill	 compared	 to	
climatology	 in	Northern	Hemisphere	winter,	but	are	not	skillful	 in	summer.	 	 	Root	
mean	 square	 errors	 (RMSE)	give	 an	 impression	of	 slightly	 greater	 skill	 relative	 to	
climatology	but	are	not	shown	here.		The	general	lack	of	meaningful	skill	relative	to	
climatology	is	well	known	to	climate	forecasters	but	does	not	imply	that	the	model	
forecasts	are	without	value;	rather,	the	distribution	of	forecast	members	within	the	
model	 ensemble	 must	 be	 utilized	 to	 create	 meaningful	 guidance	 in	 probabilistic	
form.	

																																																								
3		Our	results	may	appear	to	differ	 from	other	studies	of	 these	two	models(	e.g.,	Kim,	Webster,	and	
Curry,	2012),	but	it	is	essential	to	observe	that	measures	of	quality	will	depend	on	model	calibration	
methods	 and	 the	 verification	 datasets	 used.	 	 Kim	 et	 al.	 focus	 on	 model	 bias;	 we	 focus	 on	 the	
probabilistic	forecasts.	
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2.3.2		Prediction	Interval	Coverage		

A	second	simple	but	useful	measure	of	the	quality	of	a	forecast	calibration	scheme	is	
the	 coverage	 of	 a	 prediction	 interval	 by	 the	 calibrated	 forecast	 ensemble.	 	 The	
prediction	 interval	 for	 a	 forecast	 is	 the	 range	 (centered	 on	 the	 expected	 value)	
determined	from	the	forecast	probability	distribution	within	which	the	predictand	
(e.g.	temperature)	is	expected	to	fall	with	a	certain	probability;	for	example,	a	66.7	
percent	 prediction	 interval	 is	 expected	 to	 contain	 the	 verifying	 observation	 with	
66.7	 percent	 frequency	 and	 in	 the	 case	 of	 a	 well‐calibrated	 forecast	 will	 indeed	
contain	 the	 predictand	 on	 approximately	 66.7	 percent	 of	 occasions.	 	 Given	 a	
calibrated	 forecast,	 then,	 it	 is	 possible	 to	 count	 the	 fraction	 (“coverage”)	 of	
observations	that	fall	within	a	prediction	interval	and	thereby	assess	the	goodness	
of	 the	 calibration.	 	 Furthermore,	 it	 is	 possible	 to	 perform	 a	 further	 calibration	 to	
adjust	the	spread	of	the	ensemble	members	to	cover	the	desired	prediction	interval	
more	adequately.		

The	widths	and	observed	coverage	of	the	66.7	percent	prediction	intervals	from	
the	 unadjusted	model	 ensembles,	 the	 bias‐adjusted	 ensembles,	 and	 the	 calibrated	
ensembles	are	shown	in	Table	2.	

The	prediction	 intervals	 from	the	original	model	ensemble	contain	notably	 too	
few	observations	 in	all	 cases,	but	 this	problem	 is	partly	caused	by	 the	model	bias.		
After	applying	 the	bias	adjustment,	 the	prediction	 interval	 remains	 too	small	on	a	
global	 basis,	 indicating	 that	 the	 ensemble	 spread	 is	 too	 small	 on	 average.	 	 The	
calibrated	 prediction	 interval,	 in	 contrast,	 is	 fairly	 close	 to	 capturing	 the	 correct	
fraction	 of	 observations,	 indicating	 that	 the	 calibration	 schemes	 are	 performing	
reasonably	well.	

2.3.3		Reliability	Diagrams	

A	comparison	of	predicted	probabilities	and	observed	frequencies	provides	a	third	
measure	of	 forecast	quality.	 	We	determine	boundaries	 for	below,	near,	and	above	
normal	categories	with	the	verification	data	in	the	calibration	set;	the	categories	are	
often	but	not	necessarily	terciles.		Then	using	the	ensemble	probabilities,	we	obtain	
predicted	 probabilities	 for	 the	 observation	 occurring	 in	 each	 category	 for	 each	
forecast	point	and	time.			We	divide	the	predicted	probability	axis	into	a	set	of	bins	
and	record	the	number	of	predictions	that	fall	in	each	bin	along	with	the	number	of	
cases	in	which	the	forecast	was	correct.		The	total	number	of	forecasts	falling	in	each	
bin	is	known	as	the	sharpness	 s(p) 	of	the	forecast;	the	number	of	correct	forecasts	
in	each	corresponding	bin	is	the	verification	 v(p) .		For	each	of	the	three	possibilities	
of	below,	near	and	above	normal,	we	define	the	reliability	of	the	forecast	to	be	

	 r(p)  v(p) / s(p) 		 (9)	

and	plot	 r(p)	against	 p 	as	the	observed	frequency	of	the	events	we	are	attempting	
to	 predict.	 	 For	 a	 perfect	 probability	 forecast,	 the	 events	 predicted	 to	 occur	with	
probability	p	will	occur	with	a	frequency	p	and	so	we	will	have	 r(p)  p	and	a	plot	of	
r(p)	will	lie	along	the	diagonal.		Usually	probability	forecasts	will	be	too	confident	at	
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high	 probabilities	 and	 not	 sufficiently	 confident	 at	 low	 probabilities	 and	 thus	 the	
reliability	 curve	 r(p)		 will	 be	 flatter	 than	 the	 diagonal.	 	 Various	 aspects	 of	 the	
reliability	diagram	are	discussed	by	Wilks	(2006).	

Reliability	diagrams	for	the	October	forecasts	for	winter	(DJF)	for	2000‐2009	are	
shown	in	Fig.	2	for	the	variance	adjustment	and	in	Fig.	3	for	the	Bayesian	calibration.		
While	it	is	evident	subjectively	from	the	diagrams	that	the	WCS	MME	forecasts	are	
more	 reliable	 than	 the	 individual	 forecasts,	 it	 is	 worth	 attempting	 a	 quantitative	
measure	of	reliability	to	provide	an	objective	comparison.		Perfect	reliability	curves	
have	a	slope	of	1	while	 the	curve	 for	 forecasts	using	the	climatological	probability	
would	be	flat	near	a	value	expected	to	be	near	one‐third	for	ternary	forecasts	and	to	
have	a	zero	slope.	We	define	a	 reliability	 index	as	 the	best‐fit	 linear	 slope	 s	of	 the	
reliability	curve	with	a	penalty	for	empty	bins	as	 RI  s f 	in	which	f	is	the	fraction	of	
bins	 that	 have	 estimates4.	 	 Thus	 RI 1 	for	 perfect	 reliability	 and	 RI  0 	for	
climatology.	 	The	values	of	 this	 index	 for	 the	reliability	curves	 in	Figs.	2	and	3	are	
provided	 in	Table	3	and	verify	 the	visual	 impression	 that	 the	WCS	MME	 forecasts	
are	the	most	reliable	of	the	three	forecasts.	
	

	
Fig.	1	Scheme	for	calibrating	simulated	operational	forecasts,	with	the	historical	calibration	period	in	
blue	and	the	forecast	month	in	red.	
	

	 	

																																																								
4	Some	of	the	empty	bins	actually	contained	a	small	number	of	correct	high	probability	forecasts	that	
were	 eliminated	 by	 the	 criterion	 that	 bins	 must	 have	 20	 total	 forecasts	 or	 more,	 suggesting	 that	
longer	historical	periods	might	be	advantageous.	
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Table	1	 	Mean	 absolute	 error	 of	 lead	 2‐4	month	 CFSv2	 and	ECMWFv4	 seasonal	 2	m	 temperature	
forecasts	for	DJF	and	JJA,	2000‐2009	for	the	original	and	bias‐adjusted	(bias‐adj)	ensembles.		The	top	
row	 gives	 the	 mean‐absolute	 difference	 between	 individual	 reanalysis	 values	 and	 reanalysis	
climatology	 (°C).	 	 	 All	 other	 rows	 give	 the	 ratio	 of	 the	 MAE	 for	 the	 forecasts	 to	 the	 MAE	 for	
climatology.	 	 Areas	 are	 Global	 (GL),	 North	 America	 (NA),	 Europe	 (EU)	 and	 Tropical	 Pacific	 (TP)	
delineated	by	rectangles	covering	the	areas	named,	thus	including	some	ocean	points	for	NA	and	EU.	

	
	 October	for	Winter	(DJF)	2000‐2009	 April	for	Summer	(JJA)	2000‐2009	
Model	 GL	 NA	 EU	 TP	 GL	 NA	 EU	 TP	

Climatology	 1.01	 1.16	 1.20	 0.54	 0.74	 0.70	 0.67	 0.34	

CFSv2	 1.64	 1.33	 1.59	 1.28	 2.23	 2.36	 3.09	 1.32	

CFSv2		
bias‐adj	

0.96	 0.95	 0.97	 1.04	 1.03	 1.04	 1.01	 1.12	

ECMWFv4		 1.86	 1.87	 1.53	 3.17	 2.27	 2.04	 1.61	 5.35	

ECMWFv4	
bias‐adj	

0.96		 0.96	 0.99	 0.57	 0.99	 1.03	 1.0	 0.88	

MME	 1.61  1.46	 1.48	 2.00	 2.07	 1.93	 2.06	 3.06	

MME	bias‐
adj	

0.92  0.91	 0.97	 0.69	 0.97	 1.00	 0.99	 0.88	
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Table	2		Fraction	of	verifying	observations	falling	within	the	66.7	percent	prediction	interval	of	leads	
2‐4	month	for	CFSv2	and	ECMWFv4	seasonal	2	m	temperature	forecasts	for	DJF	and	JJA,	2000‐2009.		
The	 top	table	gives	width	of	 the	 interval	 in	 the	climatology	and	 then	 the	ratio	of	 the	width	 for	 the	
various	models	to	the	climatology	width.		The	bottom	table	gives	the	ratio	of	the	coverage	for	the	67	
percent	 interval	 to	 67	 per	 cent.	 	 Abbreviations:	 Multi‐Model	 Ensemble	 MME,	 Global	 GL,	 North	
America	NA,	Europe	EU,	Tropical	Pacific	TP,	Bias	Adjusted	Bias‐Adj	 	 ,	Variance	Adjustment	Var	Adj,	
and	Bayesian	Bayes.	

	
	 October	for	Winter	(DJF)	2000‐2009	 April	for	Summer	(JJA)	2000‐2009	

Width	of	67%	Prediction	Interval	
Model	 GL	 NA	 EU	 TP	 GL	 NA	 EU	 TP	

Climatology	(°C)	 2.3	 2.84	 3.05	 1.4	 1.88	 1.8	 1.73	 1.03	

CFSv2	Bias‐Adj	 0.77	 0.99	 0.90	 0.31	 0.73	 0.71	 0.86	 0.50	

CFSv2	Var	Adj	 0.93	 0.93	 0.90	 0.92	 0.97	 0.95	 0.98	 1.08	

CFSv2	Bayes	 0.94	 1.00	 0.95	 0.65	 0.95	 0.90	 0.97	 0.78	

ECMWFv4	Bias‐Adj	 0.79	 1.04	 0.93	 0.37	 0.81	 0.91	 0.97	 0.45	

ECMWFv4	Var	Adj	 1.00	 1.04	 0.97	 1.06	 1.02	 1.06	 0.99	 1.01	

ECMWFv4	Bayes	 0.94	 1.04	 0.99	 0.51	 0.95	 0.98	 1.02	 0.72	

WCS	MME	Bayes	 0.92	 1.00	 0.94	 0.56	 0.93	 0.93	 0.96	 0.74	

	 	 	 	 	 	 	 	 	

Verification	Coverage	of	67%	Prediction	Interval	
Model	 GL	 NA	 EU	 TP	 GL	 NA	 EU	 TP	

Climatology	 0.96	 0.99	 0.97	 1.01	 1.00	 1.01	 1.04	 1.03	

CFSv2	Bias‐Adj	 0.82	 1.00	 0.96	 0.31	 0.79	 0.82	 0.93	 0.63	

CFSv2	Var	Adj	 0.94	 0.94	 0.94	 0.94	 0.97	 0.99	 1.01	 1.12	

CFSv2	Bayes	 0.94	 1.01	 1.00	 0.67	 0.96	 0.96	 1.01	 0.93	

ECMWFv4	Bias‐Adj	 0.84	 1.04	 0.91	 0.67	 0.84	 0.96	 1.01	 0.64	

ECMWFv4	Var	Adj	 1.00	 1.01	 0.93	 1.36	 1.03	 1.04	 1.01	 1.18	

ECMWFv4	Bayes	 0.96	 1.06	 0.97	 0.93	 0.97	 1.00	 1.04	 0.97	

WCS	MME	Bayes	 0.96	 1.07	 0.97	 0.85	 0.99	 1.00	 1.04	 0.99	
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Fig.	2		Reliability	diagrams	for	the	CFSv2	and	ECMWFv4	lead	2‐4	forecasts	for	winter	calibrated	with	
the	 variance	 adjustment	 algorithm.	 	 Sharpness	 bins	 with	 less	 than	 20	 forecasts	 are	 considered	
statistically	insignificant	and	are	neglected.	

	 	

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

O
b
se
rv
ed

 F
re
q
u
e
n
cy

 

Predicted Probability 

CFSv2 North America (Variance Adjustment)   

Below‐Normal 

Near‐Normal 

Above‐Normal 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

O
b
se
rv
e
d
 F
re
q
u
e
n
cy

 

Predicted Probability 

CFSv2 Europe (Variance Adjustment)   

Below‐Normal 
Near‐Normal 
Above‐Normal 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

O
b
se
rv
ed

 F
re
q
u
e
n
cy

 

Predicted Probability 

ECMWFv4 North America (Variance Adjustment)   

Below‐Normal 
Near‐Normal 
Above‐Normal 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

O
b
se
rv
e
d
 F
re
q
u
e
n
cy

 

Predicted Probability 

ECMWFv4 Europe (Variance Adjustment)   

Below‐Normal 
Near‐Normal 
Above‐Normal 



Authors’ Copy of Climate Dynamics Article  14 of 33  25 April 2013 

	

	

	

Fig.	3	 Reliability	 diagrams	 for	 the	 CFSv2,	 ECMWFv4,	 and	WCS	MME	 lead	 2‐4	 forecasts	 for	winter	
calibrated	with	 the	Bayesian	algorithm.	 	Sharpness	bins	with	 less	than	20	 forecasts	are	considered	
statistically	insignificant	and	are	neglected.	
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Table	3		Reliability	indexes	(in	percent)	for	the	lead	2‐4	forecasts	for	winter	(DJF)	and	summer	(JJA)	
for	2000‐2009	confirming	that	 the	WCS	MME	forecasts	are	generally	more	reliable	 than	the	CFSv2	
and	ECMWFv4	forecasts	taken	individually.		Abbreviations:	Below	Normal	B,	Near	Normal	N,	Above	
Normal	A,	Variance	adjustment	calibration	Var	Adj,	Bayesian	model	calibration	Bayes.			

	
Model	 Method	 Average	

of	B	N	A	
Below	
Normal	

Near	
Normal	

Above	
Normal	

Average	
of	B	N	A	

Below	
Normal	

Near	
Normal	

Above	
Normal	

	 	 North	America	Winter	(DJF)		2000‐2009	 Europe		Winter	(DJF)		2000‐2009	

CFSv2	 Var	Adjust	 45	 58	 14	 64	 35	 19	 22	 63	

CFSv2	 Bayes	 49	 48	 25	 74	 44	 23	 42	 67	

ECMWFv4	 Var	Adjust	 42	 78	 19	 29	 13	 1	 17	 22	

ECMWFv4	 Bayes	 57	 98	 31	 43	 22	 18	 27	 21	

WCS	MME	 Bayes	 70	 93	 50	 67	 49	 34	 48	 66	

	 	 North	America	Summer	(JJA)	2000‐2009	 Europe	Summer	JJA		2000‐2009	

CFSv2	 Var	Adj	 41	 43	 28	 51	 26	 18	 16	 44	

CFSv2	 Bayes	 52	 56	 42	 57	 31	 33	 28	 31	

ECMWFv4	 Var	Adj	 41	 51	 27	 46	 46	 1	 39	 34	

ECMWFv4	 Bayes	 53	 74	 39	 47	 29	 13	 42	 33	

WCS	MME	 Bayes	 63	 77	 49	 64	 33	 20	 38	 42	

	

3. Skill	of	Probabilistic	Forecasts	for	Decision‐Making		

Users	 of	 seasonal	 forecasts	 can	 mitigate	 risk	 or	 take	 advantage	 of	 opportunity	
implied	 by	 the	 predicted	 probability	 of	 events	 to	 come.	 	 	 For	 example,	 electric	
utilities	 can	 smooth	 financial	 performance	 by	 hedging	 with	 weather	 derivatives	
against	expectations	of	warm	winters	or	cool	summers.			

A	contingency	table	comparing	forecasts	to	observations	allows	us	to	explore	the	
potential	 application	 of	 seasonal	 forecasts	 in	 this	manner.	 	 The	 various	 cases	 are	
represented	in	Table	4.			Often	all	quantities	in	the	contingency	table	are	converted	
to	frequencies	by	dividing	them	by	the	total	number	N	of	forecasts.	

In	the	table,	a	is	the	number	of	forecasts	of	above	normal	conditions	that	verified	
as	above	normal,	b	the	number	that	verified	as	normal,	and	c	those	that	verified	as	
below	 normal.	 	 The	 fi 	are	 the	 numbers	 of	 forecasts	 in	 the	 terciles,	 the	ni 		 the	
numbers	of	observations.			

We	 define	 success	 ratios	 of	 the	 form	 Sa  a / na 	as	 the	 fraction	 of	 events	
predicted	correctly,	and	we	define	the	fractions	correct	Fa  a / fa 	as	the	fraction	of	
forecasts	that	were	correct.	 	With	similar	definitions	for	the	other	two	terciles,	we	
define	the	quantities	in	Table	5.		The	fractions	correct	and	the	success	ratios	will	be	
equal	if	the	contingency	table	is	symmetric	about	the	main	diagonal.		Both	will	have	
values	of	one‐third	for	random	forecasts	for	ternary	events.	
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The	fractions	of	correct	forecasts	and	the	success	ratios	for	the	three	models	are	
shown	in	Tables	6	and	7,	with	the	best	model	for	each	geographical	area	and	time	
period	indicated	by	bold	italic	type.		The	relative	performance	of	the	three	models	is	
summarized	 in	 Table	 8	 which	 shows	 that	 the	 WCS	 MME	 is	 slightly	 better	 for	
fractions	correct.	
	

Table	4	Contingency	table	for	examining	the	skill	of	probabilistic	forecasts	for	ternary	events.	

	

	 	 Observations	 	

	 	 Above	
Normal	

Near	
Normal	

Below	
Normal	

Number	of	
Forecasts	

Fo
re
ca
st
s	 Above	Normal	 a	 b	 c	 fa	

Near	Normal	 d	 e	 f	 fn	

Below	Normal	 g	 h	 i	 fb	

	 Number	of		
Observations	

na	 nn	 nb	 N	

	

Table	5		Definitions	of	summary	measures	of	forecast	skill	for	ternary	events.		All	quantities	in	Table	
4	have	been	scaled	here	by	N	so	that	na  nn  nb  fa  fn  fb  1		

	
Fraction	of	Correct	Forecasts	 F  fa Fa  fn Fn  fb Fb 		

Fraction	of	Events	Predicted	Correctly	 S  na Sa  nn Sn  nb Sb  F 		

Perfect	Forecasts	 Fp  Sp  1		

Random	Forecasts	 Fr  Sr  1/ 3 		

Improvement	Ratios	 (F  Fr ) / Fr , (S  Sr ) / Sr 		
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Table	6	 	Fractions	of	 correct	 forecasts	 (in	percent)	 for	Bayesian	calibration.	 	The	best	 forecast	 for	
each	geographic	region,	each	tercile,	and	for	the	diagonal	elements	taken	together	(denoted	as	Total)	
is	identified	with	bold	type.		Random	ternary	forecasts	would	have	fractions	correct	of	33	percent.	

	

	 October	Forecasts	for	Winter	2000‐2009	 April	Forecasts	for	Summer	2000‐2009	

Model	 Below	
Normal	

Near	
Normal	

Above	
Normal	

Total	 Below	
Normal	

Near	
Normal	

Above	
Normal	

Total	

	 NORTH	AMERICA	

CFSv2	 43	 37	 44	 43	 39	 44	 43	 42	

ECMWFv4	 40	 45	 46	 44	 41	 47	 43	 43	

WCS	MME	 45	 42	 48	 46	 42	 45	 43	 44	

	 EUROPE	

CFSv2	 38	 44	 44	 43	 33	 37	 47	 44	

ECMWFv4	 31	 41	 41	 39	 21	 47	 48	 45	

WCS	MME	 39	 41	 43	 42	 32	 43	 48	 46	

	 TROPICAL	PACIFIC	

CFSv2	 81	 33	 48	 48	 67	 42	 51	 53	

ECMWFv4	 79	 48	 69	 64	 59	 44	 59	 55	

WCS	MME	 85	 44	 61	 59	 66	 47	 56	 56	

	 GLOBAL	

CFSv2	 47	 40	 52	 49	 30	 42	 51	 45	

ECMWFv4	 41	 42	 53	 47	 30	 42	 52	 44	

WCS	MME	 48	 41	 54	 50	 32	 43	 52	 46	
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Table	7	 	 Success	 ratio	 for	 forecasts	 (in	 percent	 for	 Bayesian	 calibration),	 as	 in	 Table	 6.	 	 Random	
ternary	forecasts	would	have	success	ratios	of	33	percent.	

	
	 October	Forecast	for	Winter	 April	Forecasts	for	Summer	

Model	 Below	
Normal	

Near	
Normal	

Above	
Normal	

Total	 Below	
Normal	

Near	
Normal	

Above	
Normal	

Total	

	 NORTH	AMERICA	

CFSv2	 33	 19	 71	 43	 27	 27	 68	 42	

ECMWFv4	 50	 26	 54	 44	 34	 22	 70	 43	

WCS	MME	 42	 24	 68	 46	 27	 28	 71	 44	

	 EUROPE	

CFSv2	 21	 27	 73	 43	 12	 19	 77	 44	

ECMWFv4	 19	 25	 65	 39	 13	 23	 75	 45	

WCS	MME	 14	 28	 73	 42	 8	 23	 81	 46	

	 TROPICAL	PACIFIC	

CFSv2	 29	 23	 87	 48	 44	 16	 94	 53	

ECMWFv4	 47	 51	 90	 64	 57	 33	 74	 55	

WCS	MME	 36	 43	 92	 59	 49	 26	 90	 56	

	 GLOBAL	

CFSv2	 39	 25	 72	 49	 28	 27	 66	 45	

ECMWFv4	 40	 31	 64	 47	 36	 32	 57	 44	

WCS	MME	 38	 31	 70	 50	 29	 33	 63	 46	

	

	
Table	8	 	 Average	 performance	 ratios	 for	 the	 above	 normal	 and	 below	 normal	 terciles,	 Bayesian	
calibration.		The	best	ratios	for	each	region	are	denoted	by	bold	italic	type.	

	

	 October	for	Winter	2000‐2009	 April	for	Summer	2000‐2009	

Model	 NA	EU	 TP	 G	 NA	EU	 TP	 G	

FRACTIONS	CORRECT	

CFS	 42	 65	 50	 41	 59	 41	

ECMWF	 40	 74	 47	 38	 59	 41	

WCS	MME	 44	 73	 51	 41	 61	 42	

SUCCESS	RATIOS	

CFS	 50	 58	 56	 46	 69	 47	

ECMWF	 47	 69	 52	 48	 66	 47	

WCS	MME	 49	 64	 54	 47	 70	 46	
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4. Profits	on	Options	Illustrate	the	Value	of	Seasonal	Forecasts	

A	simple	scheme	involving	options	on	weather	or	climate	conditions	will	 illustrate	
how	the	skill	of	the	forecast	can	provide	favorable	financial	performance5.		Consider	
a	 hypothetical	 option	 on	 seasonal	 temperature	 averaging	 below,	 near,	 or	 above	
normal.		Suppose	an	option	for	each	case	can	be	purchased	for	a	preseason	price	of	
P	 and	 that	 the	 option	will	 pay	 3P	 to	 holders	 of	 options	 for	 the	 case	 that	 verified.		
There	is	an	implicit	assumption	here	that	the	market	is	large	enough	and	the	option	
purchases	 are	 sufficiently	 symmetric	 to	 support	 the	 contracts;	 for	 simplicity	 we	
ignore	transaction	costs.			

For	F	the	fraction	of	correct	forecasts,	the	rate	of	return	is		

	

R  (3FP  P) / P

 3F 1

 (F  Fr ) / Fr 		 (10)	

with	the	last	line	the	improvement	ratio	with	respect	to	random	forecasts	defined	in	
Table	5.	

Table	9	illustrates	the	returns	on	the	hypothetical	options	that	would	have	been	
achieved	with	the	WCS	multimodel	forecasts,	assuming	that	options	were	purchased	
for	the	tercile	with	the	largest	probability.		An	alternate	strategy	is	to	take	a	position	
each	time	the	predicted	probability	for	a	tercile	exceeds	some	threshold	value.			

To	explore	this	concept,	we	define	as	cumulative	quantities	for	all	probabilities	
greater	than	p	the	number	of	forecasts,	 S(p) ,	the	number	of	correct	forecasts,	V (p),	
and	the	net	financial	gain	from	the	trades,	G(p) ,	with	

	
S(p)  s(y)dy, V (p) 

p

1

 v(y)dy
p

1

 , G(p)  3V (p) S(y)
	 (11)	

We	use	 the	 definitions	 associated	with	 (9)	 and	 then	 convert	 (10)	 from	 rate	 of	
return	 to	 gain.	 	 To	 be	 specific,	 we	 will	 assume	 that	 options	 worth	 $1	 M	 are	
purchased	when	 the	probability	 threshold	 is	equaled	or	exceeded.	 	Using	 the	data	
associated	 with	 the	 reliability	 diagram	 for	 the	 WCS	 MME	 for	 North	 America	 for	
winter	in	Fig.		3,	we	compute	(11)	as	sums	over	the	probability	bins	and	display	the	
results	 in	 Fig.	 4,	 which	 shows	 that	 maximum	 total	 net	 gains	 per	 average	 station	
would	 have	 been	 achieved	 by	 purchasing	 options	 whenever	 the	 predicted	
probabilities	exceeded	40	per	cent.	 	For	 the	below	normal	 case,	 the	 investment	 in	
2.3	options	per	station	over	the	10‐year	forecast	period	would	have	produced	a	net	
gain	of	$1M	and	the	above	normal	5	options	per	station	would	have	produced	a	net	
gain	of	$2.4M	with	corresponding	net	returns	of	43	and	48	percent.		The	difference	
in	 the	 two	 cases	 is	 created	 by	 the	 larger	 fraction	 of	 above	 normal	 forecasts	
accumulating	at	larger	probabilities—a	bias	that	we	will	examine	in	Section	7.	
	 	

																																																								
5	Taylor	 and	 Buizza	 (2006)	 applied	 a	 similar	 approach,	 using	 ten‐day	 ensemble	 forecasts	 to	
determine	the	pay‐off	probabilities	of	weather	derivatives.	
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Table	9	 	 Rate	of	 return	 from	 trading	 the	hypothetical	weather	derivative	with	 the	 aid	of	 the	WCS	
MME	for	all	forecasts	in	2000‐2009	for	DJF	and	JJA.	

	
	 Global	 North		

America	
Europe	

Fraction	Correct	 0.48	 0.44	 0.44	

Return	rate	(per	cent)	 44	 32	 32	

	

	
	

Fig.	4	Illustration	of	average	gains	per	station	obtained	by	investing	in	the	hypothetical	options	when	
predicted	probabilities	of	above	or	below	normal	conditions	in	the	North	American	winter	exceeded	
various	 predicted	 probabilities.	 	 The	 quantities	 accumulating	 for	 all	 probabilities	 exceeding	 p	 are	
defined	in	(11).	
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5. Intraseasonal	Forecasts	

Considerable	commercial	interest	is	focused	on	forecasts	with	lead	times	of	two	
to	six	weeks,	which	hold	the	potential	to	dramatically	influence	tactical	planning	and	
risk	management	for	weather‐sensitive	enterprises.		Both	the	NWS	and	ECMWF	run	
versions	of	their	forecast	systems	designed	to	supply	guidance	on	the	intraseasonal	
timescale;	for	example,	the	ECMWF	SFS	generates	a	30‐day	forecast	twice	per	week	
along	with	a	retrospective	set	of	forecasts	initialized	on	the	same	day	of	the	year	in	
each	of	the	past	18	years.	

The	performance	of	the	CFS	and	ECMWF	intraseasonal	forecasts	was	examined	
by	applying	the	Gaussian	comb	calibration	scheme	to	a	complete	set	of	retrospective	
forecasts	 from	 both	 models,	 and	 to	 the	 multi‐model	 forecast	 (MME)	 obtained	 by	
combining	the	two	ensembles.	 	The	calibration	process	was	similar	to	the	seasonal	
Gaussian	 comb	 calibration,	 except	 that	 the	 CFS	 Reanalysis	 (Saha	 et	 al.	 2010)	was	
used	 as	 the	 verification	 dataset,	 and	 the	 calibration	 and	 verification	 steps	 were	
performed	 over	 the	 periods	 of	 available	 daily	 data,	 2000‐2006	 and	 2007‐2010	
respectively.	 	 Forecasts	 of	 weekly‐average	 2‐m	 temperature	 were	 tested	 for	 lead	
times	of	one	to	 four	weeks.	 	Calibration	parameters	were	computed	separately	for	
each	month	using	all	forecasts	initialized	within	that	month.	

The	MME	forecasts	showed	good	calibration	characteristics,	as	illustrated	by	the	
reliability	 diagrams	 and	 indexes	 in	 Figure	 5	 and	 Table	 10	 respectively.	 	 The	 skill	
statistics	 for	 2007‐2010	 also	 reveal	 that	 the	 calibrated	 intraseasonal	 forecasts	
possess	 significant	 skill	 and	value	 even	at	 the	 four‐week	 lead	 time,	which	 is	 often	
thought	 to	 pose	 a	 very	 challenging	 prediction	 problem.	 	 A	 summary	 of	 forecasts	
correct	 is	 shown	 in	 Table	 11.	 	 As	 with	 the	 seasonal	 forecasts,	 the	 utility	 of	 the	
forecasts	 is	 derived	 mainly	 from	 the	 probabilistic	 information	 contained	 in	 the	
ensemble	distribution,	rather	than	from	the	relatively	unskillful	ensemble	mean.	

An	 example	 of	 the	 probabilistic	 forecast	 output	 produced	 by	 an	 operational	
version	of	 the	calibration	scheme	is	shown	in	Fig.	6,	which	depicts	an	 increasingly	
confident	CFSv2	forecast	for	unusual	warmth	in	early	December	2012	across	much	
of	the	continental	US.	
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Fig.	5		Reliability	diagrams	for	the	WCS	MME	forecasts	for	leads	of	four	weeks	for	North	America	and	
Europe	 for	 the	winter	 (DJF)	 and	 summer	 (JJA)	 for	 2007‐2010.	 	 Sharpness	 bins	with	 less	 than	 20	
forecasts	are	considered	statistically	insignificant	and	are	dropped.			

	

	
Fig.	6		CFSv2	probability	forecast	of	2‐m	temperature	terciles	over	North	America,	valid	for	the	week	
of	3‐9	December	2012.	 	The	left	panel	shows	the	forecast	 from	CFSv2	runs	initialized	in	the	period	
14‐18	 November	 (~3	 week	 lead),	 the	 middle	 panel	 forecasts	 initialized	 on	 21‐25	 November	 (~2	
week	lead),	and	the	right	panel	forecasts	initialized	on	28	November	–	2	December	(~1	week	lead).	
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Table	10	 	Reliability	 indexes	(in	percent)	 for	the	WCS	MME	week	4	 forecasts	 for	winter	(DJF)	and	
summer	(JJA)	for	2007‐2010.		Abbreviations:	Below	Normal	B,	Near	Normal	N,	Above	Normal	A.		All	
forecasts	were	calibrated	with	the	Bayesian	algorithm.	

	

Model	
Average	of		
B	N	A		

Below	
	Normal	

Near		
Normal	

Above	
Normal	

Average	of	
B	N	A		

Below	
	Normal	

Near		
Normal	

Above	
Normal	

North	America	Winter	Week	4	2007‐2010	 Europe	Winter	Week	4	2007‐2010	

CFSv2	 83	 87	 97	 64	 76	 68	 66	 94	

ECMWFv4	 52	 57	 55	 45	 33	 47	 30	 22	

WCS	MME	 86	 97	 57	 106	 47	 55	 29	 56	

North	America	Summer	Week	4	2007‐2010	 Europe		Summer	Week	4	2007‐2010	

CFSv2	 68	 80	 46	 79	 64	 76	 57	 60	

ECMWFv4	 64	 82	 30	 78	 52	 66	 44	 46	

WCS	MME	 72	 95	 31	 89	 62	 88	 47	 51	

	

Table	11	 	 Fractions	 correct	 for	 the	WCS	 MME	 weekly	 forecasts	 2007‐2010	 for	 below,	 near,	 and	
above	normal	categories	averaged	together.	

	
	 North	America	 Europe	

	 Winter	
(DJF)	

Summer	
(JJA)	

Winter	
(DJF)	

Summer	
(JJA)	

Week	1	 78	 73	 79	 74	

Week	2	 61	 56	 57	 55	

Week	3	 52	 48	 47	 45	

Week	4	 48	 45	 44	 42	
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6. Conversion	to	Impact	Variables	

Many	decisions	about	responses	to	seasonal	climate	variability	focus	on	quantities	
derived	 from	 observed	 or	 predicted	 meteorological	 variables.	 	 Examples	 include	
degree	 days	 in	 the	 energy	 and	 agriculture	 industries,	wind	 power	 in	 energy,	 and	
moisture	 and	 evaporation	 indexes	 in	 hydro‐energy,	 agriculture,	 and	 prediction	 of	
wildfire	risk.			

In	 such	 cases	we	may	be	 interested	 in	 a	 variable	 y 	derived	 from	 a	 traditional	
atmospheric	variable	 x 	by	a	possibly	non‐linear	function	 y(x)	and	we	would	like	to	
find	 the	 probability	 distribution	Py (Y )	for	 the	 probability	 that	 y Y .	 	 For	 those	

cases	 in	 which	 y(x)	is	 continuous	 and	 monotonic,	 we	 would	 have	 an	 inverse	

function	 x(y)  y1(y) 	and	 be	 able	 to	 compute	Py (Y )  Px (x(Y ))from	 the	 predicted	

probability	Px (X).	 	 Even	 in	 such	 cases,	 it	 is	 often	 more	 efficient	 to	 generate	 the	
statistics	 for	 y 	numerically.	 	 Then	 we	 simply	 convert	 the	 ensemble	

x  {x1, x2 ,, xN }of	 forecasts	 of	 x	 into	 an	 ensemble	 y  {y(x1), y(x2 ),, y(xN )}	of	
predicted	variables	and	proceed	with	the	statistical	analysis	in	analogy	with	(5).			

We	offer	an	example	using	degree	days,	which	are	widely	used	in	the	energy	and	
agriculture	 industries.	 	 In	 1999	 the	 Chicago	 Mercantile	 Exchange	 introduced	
exchange‐traded	degree	day	futures	that	now	encompass	47	cities	worldwide,	and	
thus	 it	 is	 becoming	 increasingly	 advantageous	 to	 serve	 energy	 and	 agriculture	
traders	or	risk	managers	by	transforming	seasonal	model	forecasts	of	temperature	
into	variables	such	as	heating	(HDD),	cooling	(CDD),	or	growing	(GDD)	degree	days.		
Because	 degree	 days	 are	 computed	 from	 the	 average	 of	 daily	 maximum	 and	
minimum	 temperatures,	 it	 is	preferable	 to	 acquire	daily	 temperature	maxima	and	
minima	from	high	temporal	resolution	model	forecasts.	 	This	requires	significantly	
more	 data	 storage	 and	 computational	 resources,	 and	 as	 a	 result,	 quantitative	
estimates	of	degree	days	in	commercial	seasonal	forecasts	are	rare.			

To	compute	calibrated	probability	forecasts	of	degree	days	requires	analysis	of	
both	 the	 six‐hourly	 forecasts	 and	 the	 observations	 four	 times	 a	 day	 in	 the	 set	 of	
historical	 forecasts	 in	 order	 to	 determine	 the	 bias	 correction.	 	 Then	 daily	
temperature	 maxima	 and	 minima	 in	 the	 unbiased	 forecast	 temperatures	 can	 be	
converted	to	degree	days	and	the	probability	distributions	determined.		Figs.	7	and	
8	 show	 how	 the	 predicted	 probability	 distributions	 of	 cooling	 degree	 days	 and	
degree‐day	anomalies	evolve	over	a	summer	month.			
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Fig.	7		Predicted	probability	distributions	for	cooling	degree	days	for	Washington	D.	C.	for	July	2012	
created	with	CFSv2	forecasts	in	June.		

	

	
	

Fig.	8	Predicted	probability	distributions	for	cooling	degree‐day	anomalies	for	Washington,	D.C.	for	
July	2012	created	with	the	CFSv2	system	in	June.		
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7. Apparent	Troubles	with	Long‐Term	Trends	

The	seasonal	forecasts	considered	here	exhibit	an	unexpectedly	strong	tendency	to	
favor	warmer	than	normal	at	 the	expense	of	cooler	than	normal.	 	 It	 is	well	known	
that	 long‐term	 climate	 trends	 and	 variations	 owing	 to	 the	 El	 Niño‐Southern	
Oscillation	 (ENSO)	 provide	 an	 important	 source	 of	 predictability	 for	 seasonal	
forecasts	(e.g.,	van	den	Dool	2007,	Livezey	and	Timofeyeva	2008),	but	the	bias	in	the	
numerical	forecasts	considered	here	seems	to	be	excessive	and	undesirable.	

To	 demonstrate	 the	 problem,	 we	 recall	 that	 the	 tercile	 boundaries	 are	
determined	 for	 each	 grid	 point	 from	 the	 18	 seasonal	 averages	 in	 the	 historical	
verification	 set.	 	 These	 boundaries	 determine	 the	 distribution	{ fa , fn , fb} 	of	 the	
forecasts	 and	 the	 verification	 data	 {na ,nn ,nb} 	using	 the	 conventions	 of	 the	
contingency	table	(Table	4).	 	The	results	are	summarized	in	Table	12	which	shows	
that	 the	 fraction	 of	 above	 normal	 temperatures	 in	 the	 reanalysis	 	 and	 forecasts	
increases	 during	 the	 decade	 of	 forecasts	 while	 the	 number	 of	 below	 normal	
decreases.		 The	 skewing	 of	 the	 distributions	 is	 dramatically	more	 pronounced	 for	
the	forecasts.	 	This	skewing	in	present	 in	both	the	CFSv2	and	ECMWFv4	forecasts,	
but	is	not	shown	here	for	the	individual	models.	

These	 statistics,	 it	 turns	 out,	 depend	 on	 relatively	 small	 variations	 of	
temperature.	 	 The	 width	 of	 the	 near	 normal	 temperature	 tercile	 for	 the	 zonally	
averaged	surface	temperature	is	 less	than	0.5	C	in	summer	and	less	than	0.75	C	in	
winter	over	most	of	the	range	between	60S	and	30	N,	as	shown	in	Fig.9.	

For	 comparison,	 the	 average	 observed	 global	 temperature	 anomalies	 from	 a	
1981‐2010	base	period	are	shown	in	Fig.10,	and	the	average	of	these	anomalies	 is	
compared	 to	 the	 similar	 anomalies	 in	 the	 	NCEP‐DOE	Reanalysis	2	 and	 the	CFSv2	
and	 ECMWFv4	 forecasts	 in	 Fig.	 11;	 the	 predicted	 values	 are	 the	 averages	 of	 the	
forecasts	 for	 January	 and	 July	made	with	 leads	 of	 1,	 2,	 and	 3	months.	 	 The	 range	
between	 2000	 and	 2009	 is	 approximately	 0.2	 C	 and	 thus	 is	 consistent	 with	 the	
results	 shown	 for	 observations	 in	 Fig	 10.	 	 The	 differences	 between	 the	 observed	
global	 temperature	anomalies	and	 those	of	 the	 reanalysis	and	 the	 two	models	are	
shown	in	Fig.	12,	with	the	CFSv2	global	temperatures	increasing	more	rapidly	and	
the	ECMWF	less	rapidly	than	the	observations.		The	NCEP	Reanalysis	and	the	CFSv2	
have	 similar	 trends	 even	 though	 the	 two	 series	 often	 depart	 from	 each	 other	
markedly.	 	 The	 NOAA	 Climate	 Prediction	 Center	 has	 identified	 and	 examined	 a	
number	of	issues	related	to	trends	in	reanalyses	and	forecasts	(e.g.,	Zhang,	Kumar,	
and	Wang,	2012;	Xue	et	al.,	2013).	

The	 documentation	 for	 the	 two	 models	 indicates	 that	 the	 concentration	 of	
radiatively	active	gases	is	increased	with	time	in	an	attempt	to	model	recent	trends.		
Thus	the	globally	average	temperature	has	an	intentionally	induced	temporal	trend	
that,	as	shown	by	Table	12	and	by	Fig	11,	is	too	aggressive	relative	to	the	reanalysis	
for	the	CFSv2	and	not	aggressive	enough	for	the	ECMWFv4	model.			

The	 standard	 statistical	 advice	 is	 to	 separate	 long‐term	 trends	 and	 short‐term	
variations	 and	 treat	 them	 independently.	 	 	 It	 seems	 that	 the	 seasonal	 modeling	
community	 is	 not	 following	 that	 advice,	 with	 the	 consequence	 that	 predicted	
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probability	distributions	for	temperature	markedly	favor	warmth	over	cool	relative	
to	 the	 verification	 observations.	 	 It	 may	 better	 serve	 the	 users	 of	 the	 computer	
seasonal	forecasts	to	attempt	to	maintain	a	stationary	state	for	the	computations	by	
removing	long‐term	trends	and	allowing	the	users	or	their	providers	to	make	post‐
computational	adjustments	using	climatologies	of	various	lengths	to	fit	their	needs.	

An	 increase	 of	 the	 predicted	 global	 temperature	 with	 decreasing	 lead	 is	 another	
unexpected	bias	in	the	seasonal	forecasts,	as	shown	in	Figs	13	and	14.		For	example,	
the	predicted	winter	global	temperature	 increases	some	0.2‐0.4C	between	the	July	
and	 December	 forecasts	 for	 January	 in	 the	 two	 models.	 	 These	 trends	 are	
summarized	in	Fig	15,	which	shows	a	range	in	the	difference	from	average	of	about	
0.4	C	for	the	ECMWFv4	model	and	about	0.2	C	for	the	CFSv2.	
	

	

	
Fig.	9	Width	of	the	near	normal	tercile	for	zonally	averaged	surface	temperature,	1981‐2010	in	the	
NCEP‐DOE	Reanalysis‐2	cited	earlier.	
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Fig.	10	 	Globally	averaged	surface	temperature	anomalies	relative	to	a	basis	1981‐2010.	The	three	
data	 sets	 are	 the	 University	 of	 Alabama‐Huntsville	 Microwave	 Sounding	 Unit	 (MSU	 UAH)	
temperatures	archived	at	the	National	Climate	Data	Center	(NCDC)	and	the	land‐ocean	temperature	
records	compiled	by	the	NASA	Goddard	Institute	of	Space	Studies	(GISS)		and	the		Climate	Research	
Unit	(CRU)	of	the	University	of	East	Anglia.	

	

	
Fig.	11		Comparison	of	observed,	NCEP‐DOE	Reanalysis	2,	and	predicted	global	surface	temperature	
averages,	1982‐2010	
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Fig.	12			Differences	between	the	observed	global	annual	average	surface	temperature	and	the	NCEP‐
DOE	Reanalysis	2	and	the	two	seasonal	model	predictions.	
	

Table	12			Comparison	of	the	distributions	of	the		NCEP‐DOE	Reanalysis	2	verification	data	and	the	
WCS	MME	 forecasts	 for	 surface	 temperature,	 2000‐2009	with	 the	 verification	 climatology	 (VerC).		
Fractions	for	forecasts	and	reanalysis	verification	data	in	percent.	

	
		 October	‐>	Winter	(DJF)	 April‐>Summer	(JJA)	

		
Below
Normal	

Near	
Normal	

Above
Normal	

Below
Normal	

Near	
Normal	

Above	
Normal	

Global	Forecasts	 21	 24	 56	 19	 26	 56	

Global	VerC	 26	 31	 43	 21	 33	 46	

	 	 	 	 	 	 	

Ratio	 0.80	 0.76	 1.30	 0.91	 0.77	 1.21	

North	America	
Forecasts	 27	 19	 54	 19	 21	 60	

North	America	VerC	 29	 33	 38	 29	 34	 36	

Ratio	 0.92	 0.58	 1.42	 0.65	 0.62	 1.64	

Europe	Forecasts	 10	 22	 68	 5	 19	 76	

Europe	VerC	 28	 33	 40	 19	 35	 46	

Ratio	 0.37	 0.68	 1.71	 0.26	 0.53	 1.67	

Tropical	Pacific	
Forecasts	 14	 31	 55	 20	 19	 61	

Tropical	Pacific	VerC	 32	 32	 36	 27	 35	 38	

Ratio	 0.43	 0.98	 1.52	 0.74	 0.55	 1.61	
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Fig.	13		Variation	of	CFSv2	global	average	temperature	forecasts	for	January	1983‐2010	as	issued	by	
the	NWS	for	July	to	December.	

	

	
Fig.	14	 	Variation	of	the	ECMWFv4	global	average	temperature	forecasts	for	January	1982‐2011,	as	
issued	by	ECMWF	for	July	to	November.	
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Fig.	15	 	Rate	of	 increase	of	 surface	 temperature	 in	 the	CFSv2	and	ECMWFv4	seasonal	models	as	a	
function	of	lead.	
	

8. Conclusion	

The	 current	 versions	 of	 the	 CFS	 and	ECMWF	 seasonal	 prediction	models	 produce	
probability	 forecasts	 that	 have	 sufficient	 skill,	 as	measured	 by	 success	 ratios	 and	
fractions	 correct,	 to	 provide	 meaningful	 assistance	 in	 managing	 the	 effects	 of	
seasonal	variability.	 	To	 illustrate	this	point	as	simply	as	possible,	we	showed	that	
the	 WCS	 MME	 forecasts	 during	 the	 10‐year	 period	 considered	 here	 would	 have	
produced	 fairly	 handsome	 returns	 for	 investments	 in	 a	 hypothetical	 weather	
derivative	whenever	the	predicted	probability	of	a	tercile	exceeded	40	percent.	

The	WCS	multi‐model	ensemble	forecasts	created	with	a	Bayesian	combination	
of	 the	 two	 models	 are	 generally	 more	 skillful	 and	 are	 reliable,	 in	 the	 sense	 that	
predicted	 probabilities	 of	 below,	 near,	 and	 above	 normal	 seasonal	 temperatures	
match	the	observed	verification	frequencies	reasonably	well.			

The	intraseasonal	forecasts	in	the	range	of	two‐to‐four	week	leads	also	provide	
useful	skill	and	reliability	when	calibrated	with	an	appropriate	historical	record.	

However,	there	are	apparent	problems	with	long‐term	trends	and	with	a	strong	
tendency	 for	 the	 predicted	 temperature	 to	 increase	 as	 the	 lead	 decreases	 over	 a	
range	from	six	to	one	months.		It	seems	likely	that	some	of	this	difficulty	arises	from	
an	attempt	to	model	climate	change	by	increasing	the	concentrations	of	radiatively	
active	 gases	 in	 the	models.	 	 Improved	 results	might	 be	obtained	by	 attempting	 to	
maintain	 a	 statistically	 stationary	 environment	 for	 the	model	 computations	while	
adjusting	 for	 trends	 in	 the	 initial	 and	 verification	 observations	 with	 external	
statistical	procedures.		It	may	be	possible	to	improve	seasonal	forecasts	significantly	
if	the	issues	involved	in	managing	trends	can	be	resolved	satisfactorily.	
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